

Comité Brasileiro de Grandes Barragens

Desempenho da Membrana de PVC na Barragem de Urugua-i

ANAIS Volume II

Curitiba, novembro de 1992

DESEMPENHO DA MEMBRANA DE P.V.C. DA BARRAGEM DE URUGUA - I

Eng^o Miguel Alfredo Golik Eng^o Francisco Rodrigues Andriolo

Consultores Independentes

RESUMO

A obra de Urugua-I apresenta um duplo sistema de impermeabilização (membrana de P.V.C. protegida por placas premoldadas de concreto convencional e uma membrana de concreto convencional). Urugua-I foi a primeira obra de grande porte a utilizar membrana de P.V.C. no paramento de montante.

Este trabalho tenta mostrar os resultados obtidos nesta obra, que atualmente encontra-se em operação comercial e alertar sobre os cuidados que devem ser tomados na fase de construção, para evitar que soluções técnicas boas ou ótimas sejam executadas deficientemente e conduzam a um fracasso.

Os valores das infiltrações existentes são comparadas com as infiltrações que produziram-se em outras obras com soluções convencionais.

1. DESCRIÇÃO

1.1 Da Barragem

A obra encontra-se localizada na Argentina, na Província de Misiones a aproximadamente 40 km das Cataratas do Iguaçu.

O tramo principal da barragem possui uma extensão aproximada de 700 m, uma altura de 76 m e um volume total de concretos convencionais e rolados superior a 600.000 m³ [1].

A barragem foi projetada como uma barragem do tipo gravidade, com paramento de montante vertical e paramento de jusante com inclinação 0,80 H. e 1.0 V.

A barragem de C.C.R. possui um duplo sistema de impermeabilização no paramento de montante, composta de uma membrana de P.V.C. protegida por placas de concreto convencional e uma membrana de concreto convencional de espessura variável em função da carga hidráulica (ver Figura 1).

Por exigências construtivas e de segurança foi executado um dreno longitudinal no paramento de montante na cota 143,50 m.

Por questões de montagem do equipamento para o lançamento do concreto convencional do vertedouro, o material da ensecadeira de montante foi colocado contra o paramento de montante a modo de um "blanck" até a cota 153 m, ou seja à aproximadamente 10 m por sobre o nível do dreno.

1.2 Do Material

A membrana impermeabilizante de P.V.C. do paramento de montante possui um espessura média de dois milímetros.

A membrana como assim também as faixas utilizadas para a vulcanização das mesmas e eventuais reparos é um composto de cloreto de polivinila, pigmentos plastificantes e outros compostos que assegurem obter um material flexível e que pode ser utilizado em condições de trabalho com temperaturas variando entre o 0 e 80 graus centígrados.

O componente principal é o cloreto de polivinila que representa aproximadamente o 99% da resina utilizada. Este material deve permitir a vulcanização assegurando uma união estável, estanque e resistente aos esforços

Não é permitido a utilização de materiais reciclados ou de segunda extrusão.

1.3 Das Propriedades

As propriedades principais verificadas e analisadas na membrana empregada no paramento de montante foram as seguintes:

- Resistência à tração
- Alongamento até a rotura
- Dureza

de tração.

· Peso específico

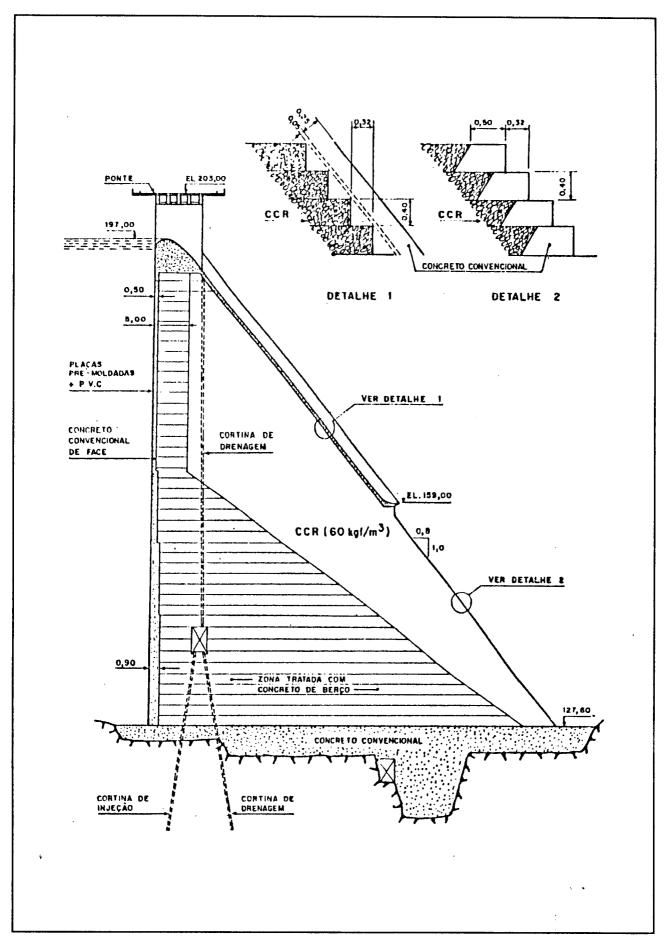


FIGURA 1 - SEÇÃO TRANSVERSAL DA BARRAGEM NO VERTEDOURO

- · Dobrado em frio
- Resistência ao efeito dos álcalis
- Resistência à pressão hidrostática (com diferentes combinações de cargas), [2]

1.4 Da Colocação no Paramento

A quantidade de membrana de P.V.C. colocada no paramento de montante foi de aproximadamente 29.000 m², as juntas vulcanizadas em obra em torno de 40.000 m e as executadas na fábrica aproximadamente 14.000 m, o que fazem um total de juntas soldadas ou vulcanizadas superior a 50.000 m

As mantas eram coladas nos painéis pré-moldados mediante à utilização de um adesivo, antes da colocação dos mesmos no paramento de montante.

Depois das placas serem fixadas no paramento, as juntas eram vulcanizadas e o controle realizado visualmente e com ajuda de uma espátula que era colocada no meio da manta e a faixa de P.V.C. que estavam-se vulcanizando.

Após estas tarefas procedia-se ao lançamento do concreto convencional do paramento de montante, o "bedding-mix" e o concreto rolado (C.C.R.)

2. DRENO JUNTO AO PARAMENTO DE MONTANTE

2.1 Descrição

O dreno junto ao paramento de montante surgiu como uma necessidade executiva para o escoamento de água da limpeza e das chuvas que poderiam percolar entre o concreto convencional do paramento de montante e a membrana de P.V.C.

Pela altura da barragem, a pressão hidrostática nas placas pré-moldadas inferiores (durante a fase de construção) seriam elevadas e certamente iriam a gerar danos nas ancoragens das mesmas. Pelo exposto precedentemente, a materialização do dreno era inevitável.

A cota de colocação foi na 143,50 m ou seja, à aproximadamente 16 m da cota da fundação da barragem principal.

O dreno está contido no concreto convencional do paramento de montante, ele è horizontal e possui um comprimento de aproximadamente 170 m e está ligado com a galeria de inspeção e drenagem por meio de dois condutos de ferro de diâmetro 4", possuindo nos extremos, na galeria, registros que podem, eventualmente, interromper o fluxo de água das percolações durante a fase de operações da barragem. Nestes registros são efetuadas as medições das infiltrações de água através da membrana de P.V.C.

O material britado que constitui o dreno está protegido por uma malha de geotextil. No interior do material britado encontra-se um cano perfurado de 4" de diâmetro de P.V.C.

Com a evolução da construção da barragem, chegou-se à conclusão que o dreno seria uma boa opção para a

verificação do comportamento da membrana como elemento impermeabilizante durante o enchimento do reservatório e posterior operação do empreendimento.

3. INFILTRAÇÕES ATRAVÉS DA MEMBRANA DE P.V.C.

3.1 Generalidades

Neste trabalho só será avaliado o comportamento da membrana de P.V.C.

O enchimento do reservatório teve seu início no dia 30 de novembro de 1989.

Após essa data iniciaram-se as leituras de controles e realizaram-se fechamentos alternativos dos registros colocados nos extremos dos condutos (na galeria), com o objetivo de limpar os condutos e evitar a obstrução dos mesmos.

3.2 Apresentação de dados disponíveis

Na Figura 2 podem se observar os valores das infiltrações verificadas através do dreno da membrana ao longo do tempo e a carga hidráulica correspondente sobre o dreno.

3.3 Observações

A montante da face de concreto convencional e da membrana de P.V.C. foi executado um aterro (como um "blanck") co material utilizado na execução da ensecadeira de montante, para o deslizamento de equipamentos de construção.

Após a cota do reservatório ter ultrapassado a cota do dreno de membrana em aproximadamente 5 m depois de 6 dias; iniciou-se "um gotejo" nos condutos que descarregam na galeria.

Quando a cota do reservatório ultrapassou em 15 m a cota do dreno em consideração, verificou-se uma vazão de 6 l/min, valor considerado baixo.

A partir dessa carga hidráulica as infiltrações incrementaram-se consideravelmente. Durante o processo de enchimento do reservatório e por prevenção de entupimento do dreno com algas ou material que encontram-se em suspensão na água procedeu-se fechamento e à abertura dos registros de evacuação em forma alternativa.

Após essas "manobras" produziam-se aumentos nas vazões do dreno da membrana. As operações de fechamento e abertura dos registros formam realizadas até as vazões alcançarem valores de ordem de 800 l/min.

Com o aumento do nível do reservatório e sem realizar nenhum tipo de "manobras" ou operações de limpeza do dreno as infiltrações continuaram a aumentar até os valores indicados na Figura nº 2. - Infiltrações na Barragem do Urugua-I.

Nos últimos 2 anos os valores das infiltrações mantiveram-se proporcionais ao nível do reservatório.

INFILTRAÇÕES NA BARRAGEM DE URUGUA-I									
TEMPO (DIAS)	CARGA HIDRÁULICA SOBRE O DRENO	INFILTRAÇÃO I/min.							
0	0	0							
3	5,00	Gotejo							
15	15,00	6							
33	21,00	41							
41	34,50	138							
85	35,40	288							
101	36,00	612							
149	47,40	787							
154	51,00	950							
211	54,00	2.090							
242	54,30	2.342							
300	54,00	2.950							
480	51,50	3.300							
	1								

FIGURA 2

4. INFILTRAÇÕES VERIFICADAS EM OUTRAS OBRAS

4.1 Generalidades

São mostradas na Figura 3 as infiltrações específicas verificadas nas barragens abaixo discriminadas [3].

Willow Creek (C.C.R. + Concreto Convencional)

Middle Fork (C.C.R. + Concreto Convencional)

Cooperfield (C.C.R. + Concreto Convencional)

- Galesville (C.C.R. + Concreto Convencional)

Lower Granite Dam (Concreto Convencional)

- Winchester (C.C.R. + Membrana P.V.C.)

- Urugua-I (C.C.R. + Membrana P.V.C.)

Na figura nº 4 pode-se destacar que há uma tendência marcante a se obter baixas infiltrações específicas em obras de C.C.R. com membrana de P.V.C.

5. OBSERVAÇÕES

5.1 Generalidades

As observações do comportamento da membrana de P.V.C. durante o enchimento do reservatório no que diz respeito às infiltrações estariam induzindo a que as operações de "limpeza" do dreno estariam gerando um dano irreversível à membrana facilitando assim a percolação de água através da mesma.

Outra possível explicação para o aumento das infiltrações após as operações de "limpeza do dreno" é que estariam aumentando as áreas com defeitos e ou danificadas da membrana, e o aumento das vazões incrementaram-se de forma súbita pois existiriam "bolsões" de água entre a membrana de P.V.C. e o concreto convencional da face de montante, que somariam seus aportes aos já existente.

Após as considerações levadas em conta anteriormente para explicar os incrementos das infiltrações por ""saltos" passam a ser enunciadas algumas hipóteses que foram objeto de consideração durante a evolução do problema.

 Perfuração da membrana de P.V.C. pelos materiais britados componentes do dreno.

PERCOLAÇÃO OBSERVADA EM 10.000 (l/s.m.m²)													
NOME DA BAR- RAGEM	MATERIAL	TEMPO - MESES											
		2	3	4	5	6	7	8	9	10	11	15	16
WILLOW CREEK	C.C.R.	14,5	11,5	11,0	9,5	8,5	8,0	7,2	6,5	6,0	5,6	4,6	4,5
MIDDLE FORK	C.C.R.	8,5	6,5	5,2	4,5	4,0	3,8	3,5	3,2	3,0	•	2,9	2,8
COOPERFIELD	C.C.R.	2,0	1,9	1,8	2,6	2,2	2,0	1,8	1,4	1,2		1,0	1,0
GALESVILLE	C.C.R.	5,5	5,1	4,9	4,5	4,0	3,9	3,8	3,7	3,5	,	-	-
LOWER/GRANITE/DAM	CONC.CONV.	6,5	5,0	4,5	4,0	3,7	3,4	3,2	3,0	2,8		2,4	2,3
WINCHESTER	C.C.R.	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
URUGUA-I	C.C.R.		0,054	0,091	-	0,18	0,20	-	-	0,26	: . •	•	0,28

FIGURA 3 - PERCOLAÇÃO OBSERVADA DURANTE E APÓS O ENCHIMENTO DOS RESERVATÓRIOS

- Ruptura das placas de concreto pré-moldadas em correspondência com a posição do dreno e perfuração da membrana de P.V.C.
- Percolação da água através dos orifícios onde encontram-se os dispositivos de ancoragem das placas pré-moldadas.
- Percolação da água através da fundação onde encontram-se inserida a membrana de P.V.C. no concreto convencional.
- Percolação da água através de fissuras que tenhamse produzido no concreto convencional (pseudoplinto) da fundação onde a membrana foi ancorada na parte inferior da barragem.

6. COMENTÁRIOS E SUGESTÕES

As "manobras" ou operações de limpeza do dreno mostram que as mesmas não podem gerar nenhum tipo de dano à membrana, pois as infiltrações continuaram à aumentar após o cessar das operações de fechamento e abertura dos registros.

As infiltrações estão na atualidade estabilizadas o que sugere que os danos ou deficiências na colocação da membrana não continuaram à aumentar após alcançar percolações máximas de 3300 l/min aos 480 dias do momento em que o nível do reservatório alcançou o nível do dreno de membrana.

Os problemas de infiltrações que manifestaram-se em Urugua-I, sejam eles gerados por deficiências da membrana, das vulcanizações defeituosas, da colocação da mesma, da perfuração durante a colocação ou outras causas levam a chamar a atenção dos técnicos sobre as precauções que devem ser tomadas para garantir o perfeito funcionamento do sistema de impermeabilização adotado.

A durabilidade desse tipo de membrana ao longo do tempo deve continuar a ser avaliada embora na literatura internacional mostre segurança e um uso crescente.

Com respeito ao comportamento das infiltrações específicas em obras com outras soluções pode-se observar que os valores obtidos são relativamente altos se comparando com o Urugua-I e Winchester.

Cabe agregar que o comportamento do Urugua-l é diferente das outras obras, pois as infiltrações são crescentes durante o enchimento do reservatório e mantém-se estabilizadas durante a operação da obra.

As variações observadas são proporcionais e concordantes com as variações de nível do reservatório.

Em todo novo projeto é importante considerar uma solução alternativa.

Entretanto, o mais importante, além de ter uma outra alternativa é de se avaliar o desempenho técnico das soluções adotadas, com o intuito de se poder optar, em outros novos projetos, para uma ou outra solução isoladamente.

Deve-se ainda, considerar o aspecto econômico das soluções.

REFERÊNCIAS BIBLIOGRÁFICAS

- [1] GOLIK, MIGUEL A ANDRIOLO, FRANCISCO RODRIGUES - C.C.R. - Controle de Qualidade no Tramo Principal da Barragem do Uruguai -XVIII Seminário Nacional de Grandes Barragens - Foz do Iguaçu - P.R., 1989.
- [2] ANDRIOLO, FRANCISCO RODRIGUES Membrana de P.V.C. na Barragem de Capanga -África - XIX Seminário Nacional de Grandes Barragens - Aracaju - 1991.
- [3] E.K. ESCHRADER D. NANIKAS Performance of Roller Compacted Concrete Dam. Sixteenth Congress on Large Dams San Francisco -1988:

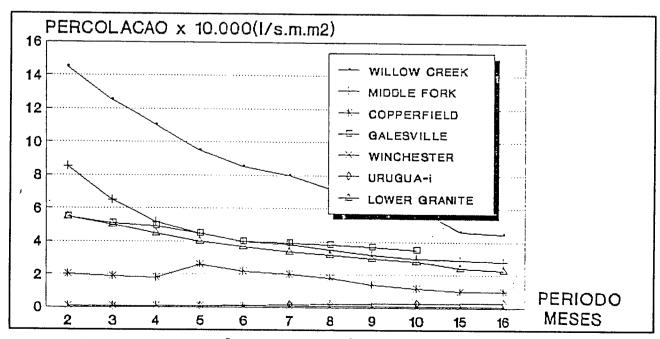


FIGURA 4 - PERCOLAÇÃO OBSERVADA APÓS ENCHIMENTO DO RESERVATÓRIO